3.-Description of a new Stonefish of the family Synanceidae from Western Australia

By R. J. McKay*
Manuscript received-18th. June, 1963

A new species of the genus Inimicus, belonging to the family Synanceidae from Western Australia is described and compared with other members of the genus. Notes on the ecology including an account of the severity of the sting of the new species are included.

Introduction

During the years 1958, 1960 and 1962 the Western Australian Fisheries Department obtained a large collection of fishes as a result of the resource surveys carried out by the research vessels Lancelin and Peron. The majority of the fish were collected in the Shark Bay and Exmouth Gulf areas. Over the past fiye years, the author has devoted much of his spare time to the study of certain groups of this collection.

The Western Australian coastline is poorly known ichthyologically, and therefore it is not surprising to find that much of the collected material is not recorded from the State, and that a few species are found to be new.

This paper presents the description of one of the species considered to be new. The opportunity has also been taken to record information on the ecology of the species.

Genus Inimicus Jordan and Starks, 1904 Genotype Pelor japonicum Cuvier, 1829

Inimicus cirrhosus ${ }^{\dagger}$ species nova Inimicus didactylus; Mees 1960, p. 19.

Differential diagnosis

Differs from all others of the genus in the possession of yellow spots on the inner surface of the pectoral fin.

Description

The description is based on the holotype and fifteen paratypes. The counts and measurements within the parenthesis are those of the paratypes. D. III XIV, 9 (III XIII-XV, 8-10). A. II, 12. (II-III, 12-13). P. $1,6,3+2$ (1-2,5-6,3-4+2-3).V.I.5. (I, 5). C. $2,9,314(2-3,8-9,3-4 \quad 13-14)$. Gill rakers $2+7$.

Head $2.9(2.7-3.2)$: depth of body 3.4 (2.64.0) : pectoral fin 2.8 ($2.5-3.1$), all in standard length. Eye $5.4(5.0-7.0)$ in head, 1.5 (1.42.1) in interorbital, 2.6 ($2.4-3.3$) in snout.

Interorbital $1.8(1.4-1.8)$ in snout, 3.6 (3.0 - 4.0) in head. Snout $2.0(2.0-2.5)$ in head. Longest dorsal spine 1.5 (about 1.5) in head.

Head about as wide as long, snout greater than postorbital part of head, and almost half length of head. Head grotesquely shaped, de-

[^0]pressed. Bony orbits elevated and prominent, with 2 or 3 low blunt knobs superiorly. A groove immediately below eye, preorbital pits shallow, interorbital space deeply concave with transverse ridge branching on to orbits at rear. A deep transverse depression behind eyes, nuchal and post-temporal spines developed. One anterior and two posterior spines on suborbital stay, Coronal ridges on snout more or less developed in sinaller examples, well developed in larger specimens.

Preorbital with two blunt spines on upper surface, ending in a sliarp spine nermally covered with skin. Nostrils low and tubular; anterior pair situated on each side of nasal hump or protuberance; posterior pair situated behind this protuberance. Preopercle with 4 spines: lower 2 blunt and scarcely worthy of being called spines; upper 2 sharp, superior spine with a ridge preceding. Opercle terminating in a fleshy flap; upper portion of opercle with 2 well developed radiating ridges, uppermost ending in a spine.

Mouth small, oblique; lower jaw projecting. with a small symphysial knob at tip. Maxillary with posterior end expanded; width posteriorly almost equal to eye diameter. Maxilla ends well before eye. Mandibulary ramus expanded posteriorly.

Teeth small, sharp, and conical; 4-5 series in both jaws, fewer posteriorly; similar teeth in 4-5 series on vomer. Palatines toothless. Tongue triangular, free at tip, upper surface smooth generally with few low tubercles near margin.

Gill rakers $1-3+7-8$, low, knoblike and intensely spiniform.

Branchiostegal rays 7. Gill membranes united to isthmus but not broadly so.

Body elongate, little compressed, tapering posteriorly almost in a straight line along dorsal surface from 4 th or 5 th dorsal spine.

The 3 anterior dorsal spines almost detached from the rest of fin, with membrane almost to their tips. Remaining $13-15$ spines, except last 1 or 2 , have interspinous membrane low. Dorsal spines sharp, slender and strong, grooved at tips, skin reaches tips of spines in most examples. All spines except first 3 and last 3, almost uniform height. Dorsal rays decrease in length posteriorly, last ray connected to caudal peduncle by membrane, only tip free. Anal fin low, spines sharp but embedded in thick skin. Tips of anal rays slightly thickened, free for about one-third of their length, last 3 with membrane to tips.

Pectoral fin large, extending well past origin of anal. First 1 or 2 and last 5 or 6 pectoral rays simple, intermediate ones branched. Lower 2 pectoral rays free, for the most part; generally curved, thickened slightly, and almost equal in length. Length of ventral fin almost equal to that of head, adnate to belly with free tips of the rays reaching well beyond anus.

Caudal fin rounded, length almost equal to that of head, outermost 2 or 3 rays normally simple. Caudal peduncle less than interorbital measurement.

Body and head without scales. Skin loose, with dermal flaps, filaments, skinny tentacles and branched appendages, especially on head, chin, mandibles, margins of preopercle and pectoral fin, and upper surfaces of sides and back. Well developed branched dermal appendages on each side of chin, placed low on preopercle margin.

A somewhat obscure lateral linc present with 12 to 13 pores along its length. A few pores above lateral line near dorsal surface: all pores have small mostly branched dermal appendages.

Colour

Body and head generally brownish, densely mottled with lighter and darker diffusc blotches and variable marblings. Holotype deep brown with areas of lighter brown and patches of greywhite near 1st, 4 th, 5 th and 10 th to 15 th dorsal spines, cxtending below lateral line; a pale diffuse bar through soft dorsal fin. Lower sides and belly with numerous scattered light and dark flecks and diffuse blotches. Ventrals uniform brown. Caudal with 2 vague narrow whitish cross-bars or two rows of white spots (in life, yellow).

Pectoral fin dark brown, almost black witly indistinct pale cross-bars and variable blotelies on outer surface. Inmer surface dark brown to
blackish, with 20 to 35 white (in lifc bright yellow) spots of indefinite shape. In larger cxamples the yellow spots are more diffuse and frequently in the form of ocelli. (Fig. 1a).

Base of pectoral fin, and lower sides of belly above ventral fins, palc with brown flecks and indistinct marblings.

One paratype has body yellowish with scattered brown spots on body and a few dark spots on head; dorsal fin plain yellow. Caudal brownish with scattered dark brown and yellow spots. Lower portions of body brownish with some scattered dark spots. Ventrals brownish with a few scattered darker spots. Outer surface of pectoral fin yellow with scattered dark brown spots. Inner surface of pectoral fin brownish with yellow spots, about eye diameter in size: 2 to 3 rows of smaller dark brown spots near margin of fin, and a few scattered dark spots on fin. especially near basc.

Material Examined

Unless otherwise stated, all Western Australian Museum material was taken by trawl net on the State Fisheries Research Vessels Lancelin and Peron, collected by the author. Western Australian Museum and Australian Museum registered material is abbreviated WAM and AM rcspectively.

I. cirrhosus

Holotype.-WAM P 4980164 mm total length, 125 mm standard length, approx. 9 miles north of Cape Peron Flats, Shark Bay, 1.X.1960.

Paratypes.-WAM P 4983198 mm t.l., 155 mm s.l., Exmouth Gulf 14.XI.1960; P 4987322 mm t.l., 256 mm s.l.. Rat Island, Abrelhos Is., 2.III. 1963 hand spear whilst diving in 9 fathoms; 13 specimens from Shark Bay collected between 23.V. 1960 and 27.X. 1960 WAM P 4981, P4982,

Fig 1. Inimicus cirrhosus. a. Inner surface of pectoral fin showing markings.

P 4984, P 4985, P 4986 and P 4988 to P 4995 inclusive, range of measurements 75 to 257 mm t.1., 56 to 203 mm s.l.

Other species

I. didactylus (Pallas) AM 1B.4439 and 1.1499, 2 specimens.
I. jaronicus (Cuvier) AM 1.13702, 1 specimen.
I. barbatus (De Vis) AM 1A.4782, 1A.6137. 1A.6671, 1A.6672, 1.14039, 1.10933 and 1B.1716. 7 specimens.

Distribution

Known from Exmouth Gulf. Abrolhos Islands and the type locality, Shark Bay.

Comparison with Other Species

Inimicus cirrhosus appears closest to 1 . didactylus and I. barbatus, their structural details and bcdy propertions being very similar.

On examining the two specimens of I. didactylus at the Australian Museum, it was found. as McCullcch (1916, p. 197) noted, that the coloration and markings of the inner surface of the pectoral fin agreed with Bleeker's (1874. pl. IV, figs. 1-1A. 1878, pl. CCCCXIV, figs. 5-5a) plates of this species.

The svecimens of I. barbatus have the colorstion and markings of the immer surface of the pectoral fir as McCulloch (1916, pl. LVII) figured.

Slecker (1874, p. 1) and McCuiloch (1916) have remarked on the importance of the coloration and markings on the inner surface of the pectoral fin in determining species of Inimicus as these are consistent within a specics. This is true for I. cirrhosus, as over 200 specimens were checked from Shark Bay and Exmouth Gulf during 1958, 1960, and 1962.

The 2 specimens of I. didactylus examined had the eye equal to the interorbital spacc, and in I. cirrhosus, the eye in interorbital space langed frem 1.4 to 2.1. Herre (1951, D. 472) records the eyes as being about a diamcter apart in Philippine specimens of 48 to 128 mm in length. Fowler (1927, p. 288) gives eye as 2 in interorbi-
tal in a Philippine specimen of 183 mm , while Day (1878, p. 161) gives eye as $1-1 \frac{1}{4}$ apart in a specimen of $5 \frac{1}{2}$ inches from the Andaman Islands. McCulloch (1916) records variation in interorbital space for I. barbatus, being narrower in smaller examples: this is generally so in I. cirrhскиз (see Table 1).

Bleeker (1878, pl. CCCCXVI, figs. 3-3a) shows the pectoral fin markings of I. cuvieri (Gray) and on pl. CCCCXIII, figs. 1-1a, the pectoral fin markings ef I. brachyrhynchus (Bleeker). The pectoral fin markings of I. maculatus (I. didactylus), and I. filamentosus (Cuvier) were also figured. Published descriptions by Günther (1860, p. 150), Herre (1951, p. 470 and p. 473), and Fowler (1927, p. 289; 1928, p. 299) agree with Bleeker's plates.

The specimen of I. japonicus examined has the eyc 2.0 in interorbital, snout 2.7 in head, and the postorbital part of head (25 mm) is greater than the shout (19 mm). Günther (1860, p. 151), gives eye as 2.5 in interorbital. and an anal ray count of 9 , for this species, while Tanaka (1914, p. 248) records counts of 7 dorsal and 9 anal rays in a specimen of 220 mm , and gives snout as 2.5 in head.

Smith (1958, p. 276) records D. as III XII, 8, A. III, 8, "and pector'al and caudal with middle parts light" for I. filamentosus. Fowler (1938, p. 36) gives coloration oí pectoral fin of I, bifilis (Fowler") as having "broad white subbasal band. adjoining blackish area over branched rays and another terminally: lower detached rays with dark spots". I. bifilis has a dorsal count of XVII. 8 , and an anal count of 13.
I. caledonicus (Sauvage) has a dorsal ray count of 7, and a total anal count of 12. (Fowler 1928, p. 299, (after Sauvage)).

Variation in Pectoral Rays

Paratype WAM P 4994 has 3 free pectoral rays on the right hand fin, the first 2 are joined for half their length; the left hand pectoral fin has the normal 2. The joined pectoral rays in this specimen number 9 instead of the usual 10.

TABLE I
Measurements in mm and fin ray counts of I. cirrhosus

- $-\ldots$	$\frac{5}{7}$	\bar{x} $=$ $=$		$$	+ $=0$	-	-	-		$\begin{aligned} & \vec{\partial} \\ & \stackrel{y}{\ominus} \\ & = \\ & = \end{aligned}$	-	-	-	\%	\pm - -	-
Tutill forieth	164	191	2.20	19 s	257	-219	238	$: 20 \cdot 1$	98	75	1:3:3	116	99.	1:21	15.5	136
-timbind lenglo	12.5	150	150	15.3	$\cdots(1)$	167	190)	-56;	7.5	56	100	90	77	93	119	100
Lewerlh of lomal	4:3	$5:$	(i)	5%	73	-t	(i)	88	25	$\bigcirc 1$	3:3	31	25	83	43	37
latheth al stumt	こ1	25	2!	$2: 3$	34	\cdots	\cdots	:3!)	12	111	16	11	1?	14	20	15
bismuter of rece	\therefore	$!$	10	$!$	10	!	11	13	\pm	4	(i)	;	5	5	${ }_{1}$	(i)
Interorlojial	$1:$	14	1s	13	19	16	17	-1	7	6	11	*	7	10)	11	10
Sicciate it body dopth	37	43	5.x	is	79	50	56	81	20	16	3:3	24	$\because 33$	$2: 3$	23	3 ?
T. 1 गusth of peretor:1 (!)	4.5	$4!$	60	$5: 3$	70	59	(i)	83	:30	21	37	3.3	21	30	45	41
Lemetlo of upper frex pectoral r:sy	:3!	30	35)	3.3	$\ddagger 1$	82	:39	67	15	13	20	16	16	18	17	23
pertoral rity	10	$\because 2$	$3: 3$	31	$1: 3$	81	:39	(i)	16	1:3	23	19	16	17	19	23
Sufl dor**al liats.	32	37	± 7	41	50	47	:38	67	20	14	$\because 6$	\cdots	21	$\because 4$	$\because 8$	30
Altal hitae.	54	$1 ; 1$	75	(69)	! 4 :	$\times 1$	84	114	35	$\cdots 7$	50	37	38	$4 \pm$	53	5
Ventrial base	:35	37	4.5	+2)	(i)	47	19	71	230	1 ($\because 7$	26	-3:	\cdots	88	3:3
Depth of cathial pedumele	11	11	13	12	12	1%	14	20	if	5	\%	8	1	7	8	!
No. of dorsil rays....	9	4	9	!	-	10	! 4	! ${ }^{\text {d }}$	9	9	9	9	9	8	8	9
Nu, ul anal rilys.	1%	1:3	129	1 11	13	1:3	$1: 3$	1!	1!	1:3	12	12	12	13	13	1%
	14	13	13	14	13	14	17	14	14	14	14	$1: 3$	14	14	14	14

Paratypes WAM P 4988 and P 4989 have the two uppermest pectoral rays filamentous at their tips, the rays extend 8 mm and 12 mm from the tip of the pectoral fin respectively. Paratype WAM P 4922 has only the upper pectoral ray filamentous; this ray extends 18 mm from the pectoral fin membrane, 7 mm from the tip of the pectoral fin. This condition apparently exists in the juveniles as these 3 paratypes measure $75,56,77 \mathrm{~mm}$ in s.1. respectively.

In view of these observations of the juvenile character's of I. cirrhosus, it is possible that some "species" with similar characters may be juveniles of other species. The type of I. bifilis from the Philippines measures only 57 mm in length and Fowler remarks "Greatly like Inimicus filamentosus, but only the uppermost pectoral ray ending in a filament which reaches well beyond the depressed pectoral fin". This could be a juvenile condition of perhaps I. cuvicri cr I. didactylus which have been recorded from the Philippines by Herre (1953, p. 576).

General Biology and Ecology

I. cirrhosus was found to be a sluggish, Lottom-dwelling marine form inhabiting open, sandy, or silty types of substrates. Inside Shark Bay, it has a wide distribution and is commonly taken on prawn trawling grcunds, often in associaticn with Scallcps Amusium balloti Bernardi. Two or 3 per haul are not uncommon. The greatest number recorded inside Shark Bay during 1962 was 14 during a 45 -minute trawl.

During 1961, F.R.V. Percn used a temperaturechlorinity conductivity meter, and specimens of I. cirthosus were collected in salinities ranging frem 35.7% to 44.9%, and temperatures from $18.2^{\circ} \mathrm{C}$. to $26.4^{\circ} \mathrm{C}$. The depths recorded on the ccho sounder were between 7 and 12 fathoms.

Partly digested fish were found in the etomachs of 2 specimens: these werc identified as Monacanthus sp. and Equula fasciata (Lacepede).

A near-ripe female, t.1. 215 mm , was trawled inside Exmouth Gulf early in October, 1958. One ripening female t.l. 220 mm trawled inside Shark Bay carly in February, 1962, had ova 0.8 mm in diameter, and 3 females, t.l. 210 to 265 mm were frund to be spent during May, 1962.

Like other members of the family Synanceidac. they are reluctant to move when approached, and lie quite motionless, even when spilled from the trawl net on the deck of the vassel. One was taken underwater and the fish made no attempt to move. but ouickly spread the dorsal spines to afford protecticn frem most dircctions. The pectoral fins were extended to show the makings on their imner surface. The fish was not easily rccognised in its ratural surroundings, as it was covercd to some extent by fine sand. and appearcd ouitc hirsute due to the dense covering of demal cirri and appendages.

Notes on Sevcrity of Sting

This species is capable of inflicting an cxtremcly agenising wound. The following notes were made carly in October. 1960, after the author was stung on the thumb. The pain was immediate and intense, the wound bled very freely for a few minutes then ceascd. Blecding was difficult to restart. Pain became rapidly unbearable.

1145 hrs. While sorting a trayful of fish emptied from trawl 31, left thumb deeply penetrated by dorsal spine of Inimicus. Bleeding freely.

1150 hrs. Blceding stopped.
1155 his. Thumb swollen, area around wound becoming grey-blue in colour, extremities of fingers becoming very painful, pain in thumb almost unbearable. Elbow and shoulder now aching.

12 midnight. Sweating profusely, thumb and hand swollen, wrist very stiff, area arcund wound bluish, threat and mouth dry.

0005 hrs. Became delirious, do not remember much, but can recollect throwing myself about the cabin in fearful pain. Crew members restrained my movements for the next 30 minutes, during which I was screaming and complaining of pains around chest and neck.

0045 hrs. Fegained full consciousness, the pain in arm and shoulder very agonising.

0115 his. Hand and thumb immersed in hot water and sedatives taken.

0200 hrs. Pain still present but greatly diminished.

Thumb remaincd stiff and swoilen for four days, but the pain had subsided 12 hours after encounter. Bathing the wound with hot water greatly reduced pain, but when the water became cool enough to be comfortably borne, the pain returned. A tourniquet was not applied.

Stings by fishes such as Scorpaenids Paracentropogon vespa (Ogilby), Apistus carinatus (Bloch) and Minous monodactylus (Bloch \& Schncider'), and a stingray Amphotistius kuhlii (Müller \& Henle) were quite common on board prawn trawlers operating inside Shark Bay. From personal experience, the sting of I. cirrhosus is consiterably more painful than any of these species.

Acknowledgments

I wish to rccord my appreciation to those persons who assisted me in my studies and gave much helpful advice in the preparation of this paper: Dr. G. F. Mees, of the Western Australian Miuscum and Mir. A. J. Fraser, Director of the Western Australian Fishcries Department read the manuscript; Mr. G. P. Whitley, of the Australian Museum, gave helpful advice and assistance while I studicd fishes under his care: the ssipper, Mr. H. C. W. Piesse. and crew of the Fisheries Research Vessels Lancelin and Pcrcn, assisted in collecting fishes during trawling investigaticns and administered assistance during the crdeal of the Inimicus sting.

References

Bleaker, P. (1874).-Revision des especes insulin-diennes de la famille des Symanceoides. Naturork. Verh. holland. Maatsch. Wet. 3 ii (3): $1-22$. (1878).-"Atlas Ichthyologique des Indes Orientales Necrlandaises. public sous les auspices du Gouvermement Colontal Neerlandais". 9 (Amsterdam.)
Day. F. (1878).-The Fishes of Indla, 2 vols. (London). Fowler. F. W. (1927). Notes on the Philippine fishes in the collection of the Academy. Proc. Acad. nat. Sci. Philad. 79: 255-297. 11928). The Fishes of Oceania. Mem. Bistrop Mus. 10: 1-466.
(1938).-Dcscriptlons of new Fishes obtained by the United States Burcau of Fisherics Steancr "Albatross" chlefly in Philippine scas and adiacent waters. Proc. U.S. nat Mus. 85: 31-135.

Günther, A. (1860).-Catalogue of the Acanthopterygian fishes in the collection of the British Museum. 2: 1-527. (London.)
Herre, A. W. (1951).-A Review of the Scorpaenoid Fishes of the Philippines and adjacent seas. Philipp. J. Sci. 80 (4).
(1953).-Check list of Philippine Fishes. U.S. Fish and Wildl. Serv. Res. Dep. No. 20: 1-977.
McCulloch, A. R. (1916).-Report on some fishes obtained by the F.I.S. "Endeavour" on the coasts of Queensland, New South Wales, Victoria, TasMania, South and South Western Australia. Fisheries, Sydney 4: 169-200.

Mees, G. F. (1960).-Additions to the fish fauna of Western Australia-2. W. Aust. Fish. Dept., Fish. Bull. 9: 13-21.
Smith, J. L. B. (1958).-Fishes of the families Tetrarogidae, Caracanthidae and Synanciidae from the Western Indian Ocean with further notes on Scorpaenid fishes. Ichthyol. Bull. 12: 167-181
Tanaka, S. (1914).-Figures and Descriptions of the Fishes of Japan, including Riukiu Islands, Bonin Islands, Formosa, Kurile Islands, Korea, and Southern Sakhalin. 15: 247-262 (Tokyo.)

[^0]: * Fisheries Department. Perth. Western Australla. Present address: Western Australian Museum. Perth.
 + From the Greek kirrhos, yellow.

